Appendix A

Statistical treatment
of data

Including statistical analysis using Microsoft® Excel®

Mean and standard deviation

Suppose that we make N measurements of the same quantity x.
For the measurements to be comparable we usually arrange
for the conditions under which x is measured to be as closely
matched as possible. For example, if you wanted a meaningful
idea of how much you weigh, you wouldn’t jump on the bath-
room scale right after the big Thanksgiving dinner and then try
to compare that result with how much you weigh after running
a marathon, would you? Of course not - instead, you might try
to weigh yourself first thing every morning for a week just af-
ter you wake up.

Despite our best efforts, however, N measurements of the
same quantity x can never be made under exactly matched
conditions. There are many reasons for this fact. Some are psy-
chological and physiological: the more times we repeat an op-
eration, the better (or worse) we get at it and the manner in
which a scientist executes a measurement (i.e., technique) in-
fluences the experimental outcome. Some are physical: the sys-
tem under study changes with the passage of time in ways we
cannot fully control. Given that individual measurements of the
same quantity vary, what is the best way to report the data?

One approach is to determine the mean of the measure-
ments of x and to report the variation in the data as the stan-
dard deviation. The mean of the N measurements of x is de-
noted by the symbol X and is defined by
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where the x; represent the individual measurements of the
quantity x and the standard deviation ¢ is defined by
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The mean expresses the central tendency in a set of data. The
standard deviation expresses the theoretical expectation that
68.27% of the measurements of x will lie within one standard
deviation on either side of the mean when x is measured an in-
finite number of times.

Example

Table A-1 presents the rainfall measured at Boston during Sep-
tember from 1999 to 2003 and the quantities needed to de-
termine the mean September rainfall and its standard devia-
tion. The mean is

Table A-1 September rainfall at Boston, 1999-2003
Quantities needed in the calculation of the mean and of the standard deviation

i Xi Xi- X (xi - X)?
Year Rainfall Deviation from the mean Deviation squared
[inch] [inch] [inch?]
1 1999 9.86 5.65 31.92
2 2000 2.87 -1.34 1.80
3 2001 2.29 -1.92 3.69
4 2002 3.39 -0.82 0.67
5 2003 2.65 -1.56 2.43
Sum 21.06 40.51
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9.86+2.87+2.29+3.39+2.65 21.06
5 5

X= =4.2 (to one decimal)

The standard deviation is

o

(9.86—4.212)° +(2.87—4.212)* +(2.29— 4.212)* + (3.39— 4.212)% + (2.65— 4.212)*

5

=2.8 (to one decimal)

Thus, the best way to report the mean September rainfall is
4.2 + 2.8 inch.

Recall that ¢ expresses the theoretical expectation that
68.27% of an infinite number of measurements will lie within
one standard deviation on either side of the mean, that is, be-
tween 4.2 - 2.8 = 1.4 inch and 4.2 + 2.8 = 7.0 inch for the rain-
fall data set we are considering. Because the rainfall was meas-
ured only five and not an infinite number of times, four (2.87,
2.29, 3.39, 2.65) of the five measurements (80%) fall within
one standard deviation on either side of the mean. Agreement
with the theoretical expectation improves as the number of
measurements increases.

The t-test

Calculating the standard deviation of a mean is one way of
quantitatively assessing experimental variance. As useful as it
is, the standard deviation suffers from the weakness of its be-
ing rigorously defined only when N = o and we can never
measure anything an infinite number of times. Another tech-
nique, the t-test, is useful when the mean is calculated from a
small (N < 30) number of measurements. In the t-test, we cal-
culate a confidence interval about the mean calculated from
N < 30 measurements. The confidence interval specifies a
range of values within which we would expect to find the mean
if we were to measure a quantity an infinite number of times.
The confidence interval about a mean is defined by
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Table A-2 t-Scores at
the 99% and 95% con-
fidence levels as a func-
tion of the number of
measurements N

N tggo,  to9so,

2 63.657 12.706
3 9925 4303
4 5841 3.182
5 4604 2.776
6 4032 2571
7 3.707 2.447
8 3499 2365
9 3355 2.306

10  3.250 2.262

tc

Q

confidence interval = =+
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where t. is the t-score at the ¢% confidence level, ¢ is the stan-
dard deviation of the mean, and N is the number of measure-
ments from which the mean is determined. Table A-2 lists t-
scores at the 99% and 95% confidence levels as a function of
the number of measurements N.

Example
Suppose we measure the rainfall at Boston during September
from 1999 to 2003 (i.e., N = 5) and obtain a mean of 4.2 inch
and a standard deviation of 2.8 inch. What are the values of the
confidence intervals at the 99% and 95% confidence levels?

To compute the confidence interval at the 99% level, select
tggy, for N = 5 from Table A-2 (i.e., 4.604). The confidence in-
terval is given by

99% confidence interval = 93% _ 4 (4'6032(2-8)
5

=15.8 (to one decimal)

Thus, if we were to measure September rainfall at Boston an
infinite number of times, we would be 99% sure that the mean
would lie somewhere between 4.2 - 5.8 = -1.6 inch and 4.2 +
5.8 =10.0 inch - a pretty big spread indeed.

In like fashion, to construct the confidence interval at the
95% level, select t9594, for N = 5 from Table A-2 (i.e., 2.776). The
confidence interval is given by

t 2.776)(2.8
959% confidence interval =+ 95%9 _ i( )(28)
N \5

=13.5 (to one decimal)

Hence, we can be 95% certain that, if we to measure Septem-
ber rainfall at Boston an infinite number of times, the mean
would lie somewhere between 4.2 - 3.5 = 0.7 inch and 4.2 +
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3.5 = 7.7 inch. Note that the confidence interval shrinks (from
+5.8 inch at 99% confidence to +3.5 inch at 95% confidence) if
we are willing to hazard a lesser degree of certainty.

Incidentally, more than a century of record keeping has
shown that the average September rainfall at Boston is
3.47 inch - a value that lies within both the 99% and the 95%
confidence intervals.

Linear least-squares

Suppose a data set relating two variables x and y is expected to
obey the linear relationship

y=mx+b

where m is the slope of the line and b is the value of the y-
intercept. Because of uncertainties in measurement, a plot of
the x values versus the y values will not, in general, yield a
graph in which all of the points lie on a single straight line. We
could crudely estimate m and b by “eyeballing” a line, that is, by
drawing a line above which there are as many points as below,
but a more sophisticated approach is available.

The least-squares line is the best straight line that can be
drawn through a set of data points. Deriving the equation of
the least-squares line is a difficult enterprise involving differ-
ential calculus, solution of simultaneous equations and statis-
tics: we will simply present the computational formulas here.

For N data pairs {x1, y1}, {x2, y2}, {x3, ¥3}, ..., {xn, YN}, the
slope m of the least-squares line is given by

i=N
> (xi—x)(yi—¥)

_ =l

i=N
N (x; - %)
~

m

and b, the least-squares line’s y-intercept, is given by

b=y-mx
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where X is the mean of the x; and Y is the mean of the y;.

The least-squares slope itself is subject to uncertainty. One
way to express the variation in the data is to report the stan-
dard error of estimate G, in the least-squares slope:

i=N
> (vi- )
.
> (x; %)
i=1
Om = N =2

where X is the mean of the x;, y is the mean of the y;, m is the
least-squares slope and N is the number of data pairs used in
constructing the least-squares line. The standard error of esti-
mate G, indicates that, because of uncertainties in measure-
ment, the least-squares slope m could be as high as m + 6;,; or
aslowasm-op.

Example
Just in case you don'’t hit the lottery, it might be interesting to
investigate whether there is a relationship between income

Table A-3 Years of school attended (x) and average household income (y) in thousands of

dollars (k$); Calculation of the linear least-squares slope m and intercept b

i Xj Vi Xji- X yi-y i-X)@i-y) (xi- X)?
[year] [k$] [year] [k$] [year-k$] [year?]

1 11 32 -3 -30 90 9

2 12 46 -2 -16 32 4

3 13 57 -1 -5 5 1

4 14 60 0 -2 0 0

5 16 83 2 21 42 4

6 18 94 4 32 128 16

Sum 84 372 297 34

Mean 14 62

Appendix A - Statistical treatment of data A-6



What is your situation in life?
Are you the typical college
freshman who has already

gone to school for 12 years? If
so, the least-squares relation-
ship says that you can expect
an average annual household
income of $44,400 if you drop
out of school now. On the
other hand, finishing college
typically boosts your annual
income to $79,200.

and the number of years you go to school. Table A-3 lists data
collected by the United States Census Bureau on years of
school attended by the head of a household and average
household income; the quantities needed to compute the lin-
ear-least squares slope and intercept are also presented.

The least-squares slope m is given by

i=N
> (xi—x)(yi—-¥)

_ =

i=N
Y (x; - %)
~

m = =8.7 (to one decimal)

The slope suggests that you will earn $8,700 per year for every
year of school you complete. The least-squares y-intercept b is
given by

b=y -mx =62 —(8.7)(14) =—60

Table A-4 presents the quantities needed to compute the stan-
dard error of estimate G,, in the least-squares slope; G, is
given by

i=N 5
Y-
i=1 2
i=N
2650
1| Xti-0? ( j —(8.7)%
m N -2 6-2 '

Thus, the data suggest that annual household income in thou-
sands of dollars (y) and the number of years that the head of
the household attends school (x) follow the linear relationship

y=(8.7 +0.8)x - 60
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Table A-4 Years of school attended (x) and average household income (y) in thousands of
dollars (k$); Calculation of the standard error of estimate G, in the least-squares slope m

i Xj Vi Xj- X yi-y (xi- Xx)? vi-y)°
[year] [k$] [year] [k$] [year-k$] [year?]

1 11 32 -3 -30 9 900

2 12 46 -2 -16 4 256

3 13 57 -1 -5 1 25

4 14 60 0 -2 0 4

5 16 83 2 21 4 441

6 18 94 4 32 1 1024

Sum 84 372 34 2650

Mean 14 62

Figure A-1 shows a plot of the least-squares line and of the two
lines indicating the uncertainty in the slope.

Figure A-1 A plot of the number of years of school completed by the head of the household (x)
and average annual household income in thousands of dollars (y). The solid line represents the
least-squares line; the dashed lines indicate the uncertainty in the slope caused by the variation
in the data.

120 -
-
rd
100 =
y = (8.7 + 0.8)x — 60 r o
80 N o -
\ _ g -~
\ ” -

60 \
-~
a0 22

Average Annual Household Income
[1000$)

20 ? \
=7 =8.7x— 60
o /%’ '\ y
7 N

o \

-20 -
y = (8.7 — 0.8)x — 60
-40
-60
-80
o 2 a 6 8 10 12 14 16 18 20

Years of School Attended by Head of Household

Appendix A - Statistical treatment of data A-8



Statistical analysis of data

using Microsoft® Excel®

Statistical analysis is an important part of this course because
this is how scientists evaluate the quality of the data collected
after performing an experiment. However, computing essential
statistical quantities such as the standard deviation, linear
least-squares slope, y-intercept and standard error of estimate
of a data set can be an arduous task if the only tool at your dis-
posal is a calculator. In order to make the calculations less bur-
densome, we offer a guide to using the popular Microsoft® Ex-
cel® spreadsheet application.

Open Excel® and in row 1 of column A enter the heading
xi, then enter the heading yi in row 1 of column B. The data in
the xi column represents the year from the previously dis-
cussed September rainfall example; the data in the yi column
represents the September rainfall data in inches. Now enter the
data in the appropriate cells. The spreadsheet should look
something like this:

xi yi
1999 9.86
2000 2.87
2001 2.29
2002 3.39
2003 2.65

You calculate quantities in Excel® by typing a formula in
the cell where you want the result to be displayed. Formulas

e begin with an equal sign (=)

e may include operators that operate on operands. The most
commonly employed operators are + for addition, - for sub-
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traction, * for multiplication, / for division, and » for exponen-
tiation. The operands are cell locations denotated in the col-
umn-row system (e.g., AZ). Thus, the formula that multiplies
the number in cell A2 by the number in cell B2 is =A2*B2.

e may include functions that take arguments. The arguments of
a function are most commonly, but not necessarily, cell loca-
tions. Arguments are written in parentheses following the
name of that function. Some functions take the values in a
range of cells as their arguments. A range of cells is specified by
denoting the locations of the first and last cell in the range
separated by a colon (:).

We now need a place to store the results of the statistical
calculations we are about to perform. In Column D enter the
headings shown below: the results will be placed in Column E
next to the corresponding heading.

xi yi
1999 | 9.86 N x
2000 | 2.87 sum y
2001 2.29 mean y
2002 | 3.39 std dev y
2003 2.65 99% conf int
95% conf int
slope
y int
dev sq x
dev sq y
std error

We will use Excel®’s built-in functions (listed below) to
perform the calculations. We caution you against using these
functions uncritically and blindly trusting the answer: if you
input the data incorrectly, or if the syntax of the formula in
which these functions are used is incorrect, the result will be
wrong. Remember: Garbage in, garbage out.
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COUNT (range)

This function counts the number of cells that contain numbers
in the specified range; thus, the COUNT() function can be used
to calculate the number of measurements N in a data set. Sup-
pose we wish to find the number of x values in the spreadsheet.
The x value data starts at cell A2 and ends at cell A6: entering
the formula =COUNT (A2:A6) in cell E2 returns N = 5.

SUM(range)

This function sums the numbers in the specified range. Sup-
pose we wish to find the sum of the y values in the spreadsheet
(i.e., 2.y). The y value data starts at cell B2 and ends at cell B6:
entering the formula =SUM(B2:B6) in cell E3 returns )y =
21.06.

AVERAGE (range)

This function calculates the mean of the numbers in the speci-
fied range. Suppose we wish to find the mean of the y values in
the spreadsheet (i.e., y). The y value data starts at cell B2 and
ends at cell B6: entering the formula =AVERAGE(B2:B6) in cell
E4 returns y =4.212.

STDEVP(range)

This function calculates the standard deviation ¢ of the num-
bers in the specified range. Suppose we wish to find the stan-
dard deviation of the y values in the spreadsheet. The y value
data starts at cell B2 and ends at cell B6: entering the formula
=STDEVP(B2:B6) in cell E5 returns ¢ = 2.8464181.

TINV(probability,degrees of freedom)

Excel® lacks a built-in function for calculating a confidence in-
terval when the number of measurements N < 30; instead, the
required formula must be constructed by the user. Recall that
the confidence interval about a mean is defined by

. ] t.o
confidence interval= iCT
N

where t. is the t-score at the ¢% confidence level, ¢ is the stan-
dard deviation of the mean, and N is the number of measure-
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ments from which the mean is determined. Excel® employs
the TINV(probability,degrees of freedom) function to
determine the appropriate t-score. The probability argu-
ment of the TINV() function corresponds to the confidence
level and the degrees of freedom argument of the TINV()
function corresponds to the number of measurements, but the
correspondences makes sense only to a statistician.

If you are calculating a 99% confidence interval, the
probability argument of the TINV() function is ©.01. If you
are calculating a 95% confidence interval, the probability
argument of the TINV() function is @.05. If you are calculating
a 90% confidence interval, the probability argument of the
TINV() function is ©.10, and so on.

The degrees of freedom argument of the TINV() func-
tion equals the number of measurements N - 1. If the number
of measurements N = 3, the degrees of freedom argument
of the TINV() function 2. If the number of measurements N =
4, the degrees of freedom argument of the TINV() function
is 3. If the number of measurements N = 5, the degrees of
freedom argument of the TINV() function is 4, and so on.

Because N =5 in the spreadsheet we are considering, the t-
score at the 99% confidence level is given by TINV(0.01,4)
whereas the t-score at the 95% confidence level is given by
TINV(©.05,4).

Suppose we wish to find the 99% confidence interval of the
five y values in cells B2 to B6 in the spreadsheet. There are
several ways to proceed. The easiest method is first to calcu-
late the standard deviation ¢ and to store the result in a cell.
Let’s say you enter the formula =STDEVP(B2:B6) in cell E5.
Entering the formula =TINV(0.01,4)*E5/SQRT(5) in cell E6
returns the 99% confidence interval = 5.860814209. The for-
mula =TINV(0.01,4)*STDEVP(B2:B6)/SQRT(5) gives the
same result. If you are an Excel® animal, try

=TINV(0.01,COUNT(B2:B6)-1)*STDEVP(B2:B6)/SQRT(COUNT(B2:B6))
Suppose we wish to find the 95% confidence interval of the
five y values in cells B2 to B6 in the spreadsheet. We can first

calculate the standard deviation o: enter the formula
=STDEVP(B2:B6) in cell E5. Entering the formula

Appendix A - Statistical treatment of data A-12



=TINV(0.05,4)*E5/SQRT(5) in cell E7 returns the 95% con-
fidence interval = 3.534294878, as does entering the formula
=TINV(0.05,4)*STDEVP(B2:B6)/SQRT(5), as does entering
the formula

=TINV(0.05,COUNT(B2:B6)-1)*STDEVP(B2:B6)/SQRT(COUNT(B2:B6))

SLOPE(y value range,x value range)

This function calculates the linear least-squares slope m in one
step! In our spreadsheet the x values start at cell A2 and end at
cell A6 and the y values start at cell B2 and end at cell B6: en-
tering the formula =SLOPE(B2:B6,A2:A6) in cell E8 returns
m = -1.39. Note that the y value range is entered as the first ar-
gument of the SLOPE () function.

INTERCEPT(y value range,x value range)

This function calculates the linear least-squares y-intercept b.
In our spreadsheet the x values start at cell A2 and end at cell
A6 and the y values start at cell B2 and end at cell B6: entering
the formula =INTERCEPT(B2:B6,A2:A6) in cell E9 returns b =
2785.602. Note that the y value range is entered as the first ar-
gument of the INTERCEPT () function.

DEVSQ(range)

Excel® lacks a built-in function for calculating the standard
error of estimate G, of a linear least-squares line; the required
formula must be constructed by the user. Recall that 6, is de-

fined by
i=N )
SUi-»
i=1 .
i=N )
| Y (x;—X)
=1
Om=|> N-2

where X is the mean of the x;, y is the mean of the y;, m is the
least-squares slope and N is the number of data pairs used in
constructing the least-squares line.
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The function DEVSQ() calculates the quantities X(x; —)?)2
and Z(y; — )7)2 required in the calculation of 6;,. In our spread-
sheet the x values start at cell A2 and end at cell A6 and the y
values start at cell B2 and end at cell Bé: entering the formula
=DEVSQ(A2:A6) in cell E10 returns the quantity Z(X,-—)?)Z =
10. Likewise, entering the formula =DEVSQ(B2:B6) in cell E11
returns the quantity X(y; — )7)2 =40.51048.

Let’s suppose that we already calculated the linear least-
squares slope m of the N = 5 data pairs and placed the result in
cell E8. We just placed the value of X(x; —)?)2 in cell E10 and
the value of X(y; —)7)2 in cell E11. The value of 6, is deter-
mined by entering the formula =SQRT( ((E11/E10)-E872)/3)
in E12; the value returned is o, = 0.840426082. Note that we
have made liberal use of parentheses in constructing the for-
mula for 6;, so that Excel® doesn’t get confused about what
it's multiplying, squaring, dividing, and what’s supposed to be
the argument of the SQRT () function. You must be very careful
about using parentheses when entering Excel® formulas:
faulty grouping may return a result, but that result will be
wrong.
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